
Online Automated UML Generation

Avnish Singh Jat

B.Tech Student, Jaypee Institute of Information Technology
A-10, Sector – 62, Noida,

U.P., India(201307)

Abstract— This document contains a novel technique for
the automated generation of UML diagrams. I have
considered the automated generation of use case,
sequence diagram, activity diagram and class diagram.
Our technique consists of transforming text notation to
UML diagram online.

Keywords— UML Generation, Automated UML, Use
Case, Class Diagram, Sequence Diagram and Activity
Diagram.

I. INTRODUCTION

Unified Modeling Language plays a vital role in
software lifecycle for developing the specification of
the software. Designing phase of software lifecycle is
about designing various diagrams required for the
implementation of project.

We have tried to ease the task of developers by
providing them a platform to design these diagrams by
simply writing text notations. We have predefined
particular syntaxes for the generation of UML
diagrams.

User just needs to write the text notation and the
png image of UML diagram will be generated which
can be saved by the user. The proposed work can be
viewed online at http://softevolve.1gh.in/uml/.

II. PREVIOUS WORKS

The Unified Modeling Language was developed by
Grady Booch, Ivar Jacobson and James Rumbaugh at
Rational Software in 1994. In 2005 it is published by
the International Organization for Standardization
(ISO) as an approved ISO standard. From then much
initiatives were there to increase its extensibility.

UML diagrams from text notation were initially
stated by M. Fowler and C. Bock. Currently many
software’s have been developed for the automated
generation of UML diagrams through text notation.
Some of them are stated below:

1) UML Graph – It is used for automated
generation of class and sequence diagram from
Java-based syntax. It generates image with
graphicviz diagram specification. It can be
integrated in Eclipse with LightUML.

2) TextUML Toolkit - It is an open-source IDE
which is recently developed that uses the UML
viewer which is part of Eclipse Graphviz
project to generate the diagram (currently class
diagrams, ongoing work on activity diagrams).

3) yUML – It is a tool for generation of use case
and class diagram online through a text notation.
It is most effective tool but limited for the
generation of few types of UML diagrams only.

III. PROPOSED WORK

The main motto behind this project is to provide a
platform for developers to generate different type of
UML’s with text notation at a single place. We have
developed a web view as well as android application
which is user friendly and able to generate use case
diagram, class diagram, sequence diagram and activity
diagram.

For the generation of use case and class diagram we
have used yuml library. The text notation entered is
stored with the sessions and then pass it to
preformatted tags and finally the diagram is generated
with the help of Java Scripting used. In Java Script we
are replacing the predefined symbols to the desired
shape with the use of Java Script libraries.

A. Use Case Generation

Use case diagram is generated through predefined
text notation specified below:

1)[Actor]: To create an actor, the actor name is
written in square brackets.

2)(Use Case): To create different cases ‘()’ is used.

3) Interactions: Simple interaction can be generated
by putting ‘-’ between two use cases or between actor
and use case. Include type interaction can be created
by ’<’ sign and extend type interaction can be
generated by ‘>’sign.

Example:
Input:
[Developer]-(Develop project)
(Develop project)>(Include Design)
(Develop project)<(Code)

Avnish Singh Jat / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5340-5341

www.ijcsit.com 5340

Output:

 Fig. 1 Example of an automated generated use case diagram

B. Class Diagram Generation

Class diagram is generated through predefined text
notation specified below:

1) [Class]: To create a class, the class name is
written in square brackets.

2) Interactions: For simple association ‘-’ is used,
for cardinality ‘1-0..’, aggregation arrow is
generated by ‘+->’ , composition is shown by ‘++-
>’ and inheritance by ‘^-‘.

Example:
Input:
[HTML]<>-1..*[UML notation]
[UML notation]^-[Use case diagram]
[UML notation]^-[Class diagram]

 Fig. 1 Example of an automated generated class diagram

C. Activity Diagram

Activity Diagram comprises of all the activities
associated with project. It has a start point, set of
activities, and a end point. Similarly like previous two
some predefined notation is used to generate Activity
diagram. Notations can be depicted from the example
shown below.

Example:
Input:
 (start)->|a|
|a|->|b|
|b|->(end)
Output:

Fig. 3 Example of an automated generated activity diagram

D. Sequence Diagram Generation

Sequnce diagram is drawn to show how processes
interact with one another and in what order.

Input:
 Title: Simple diagram
 Participant B
 Participant A
 A->B: Message
 B->A: egassem
Output:

Fig. 4 Example of an automated generated Sequence diagram

IV. CONCLUSIONS

The vital importance of UML making in software
lifecycle is known to us, thus online platform is
developed for users to generate the UML diagram
with ease. In future, the work will extend to provide
the generation of all different type of UML diagrams
that are left like, package diagram, component
diagram, deployment diagram, etc.

REFERENCES

[1] G Booch, J Rumbaugh, I Jacobson “Unified Modeling
Language (UML)”1998.

[2] JB Warmer, AG Kleppe . The Object Constraint
Language: Precise Modeling With Uml (Addison-
Wesley Object Technology Series), 1998.

[3] Hans-Erik Eriksson, Magnus Penker, Astrakan, “UML
toolkit”, 1997.

[4] Sinan Si Alhir, “UML in a Nutshell”, 1998.
[5] R France, A Evans, K Lano, B Rumpe, “The UML as

a formal modeling notation”, 1998.

Avnish Singh Jat / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5340-5341

www.ijcsit.com 5341

